
Journal of Mathematical Chemistry 16 (1994) 245-256 245 

Chemical  algebra. I: Fuzzy subgroups 

Remi Chauvin 

Laboratoire de Chirnie de Coordination du C.N.R.S., Unitd 8241, 
lide par convention ?t l'Universitd Paul Sabatier, 205 Route de Narbonne, 

31 077 Toulouse Cedex, France 

Received 7 July 1994 

Using the notion of fuzzy subset, the algebraic formulation of the constant of stereogenic 
pairing equilibria between skeletal analogs (previously disclosed) is connected to symmetry 
group theory. A distinction is introduced between geometrical (skeletal) symmetry and topo- 
graphical (numerical parameters) symmetry. In order to describe "topographical symmetry", a 
formal extended definition of a subgroup is proposed. Fuzzy subsets of the skeletal group G 
are endowded with a structure which can be defined without referring to the geometrical repre- 
sentation of the abstract group isomorphic to G. The relevance of these propositions is evi- 
denced by their "integer interpretation" meeting basic def'mitions of group theory, as well as by 
their role in expressing chemical pairing constants. 

1. Introduction 

The starting point is the shift of the pairing equilibrium 

2U1/U2 ~ Ul/Ul -]- U2/U2 , 

where Ul and u2 represent two molecules interacting with each other or with them- 
selves. The equilibrium constant (or "pairing product") is 

K = [u /u l[u /u2l, 
[u /u2] 

where [ui/uj] denotes the concentration of the paired species Ui/U j. 
As an example, metathesis of olefins can be regarded as a stereogenic pairing 

equilibrium where the stereogenicity corresponds to the cis/trans isomerism, and 
where  the symmet r i zed  skele ton cor responds  to an  ideal ized geome t ry  (e.g. the  geo- 

m e t r y  o f  the  symmet r i c  carbene  H2C:) (see fig. 1). 
A general  a lgebraic  f o r m u l a t i o n  has  been p roposed  a n d  discussed on  the basis  

o f  three  hypothes i s  [1,2]. 
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Fig. 1. 

(1) Skeleton symmetrization: skeletons of interacting molecules are identically 
symmetrized in a realistic manner. 

(2) Skeleton overlap pairing: the geometry of the paired species is the juxtaposition 
of the two skeletons, in such a manner that they are parallel and close to each 
other. 

(3) Scalar product form of the ligand interactions: only one kind of pairwise ligand 
interaction occurs, and the corresponding energy is proportional to a scalar prod- 
uct between real or vector ligand parameters assigned to skeletal sites. 

Considering the pairing stereogenicity resulting from the symmetry of the skele- 
ton as an "entropic contribution", the pairing equilibrium constant has been 
expressed by 

K =  rqkT g rqkT ] /  

( ex, E ' 
where a(guilu:)/re is the interaction energy in the pair guduj:  a and q are fixed 
parameters with a < 0, r is the (short) distance between the paired species. 

Many recent efforts focus on the quantification of molecular similarity [3]. In 
this prospect, conditions are sought to make K reflect "how much skeletal analogs 
ul and u2 have similar topographies". The consistency of such a quantification by 
1/K requisitions the following conditions: 

(a) 0<~I/K~<I. 

(b) 1/K = 1 =~ ul and u2 are chemically equivalent: Ul = gou2 for some skeletal 
symmetry operation go (the converse implication is always satisfied). 

For C1 (or Ci or Cs) and for C2 (or C2h or C2v or $4) skeletal symmetries, these 
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properties have been proved regardless of the nature (real number or vector) and 
the values of the ligand parameters. They have been discussed for carbene dimeriza- 
tion equilibria, equilibrating Diels-Alder reactions and equilibrating cyclopropa- 
nation reactions, where the pairing stereogenicity corresponds to a cis/trans 
isomerism [1 ]. 

The model has been also applied to chemical chirality in order to answer the fol- 
lowing question: if u and v are isomers which do not interconvert by any rotation 
but which interconvert by an improper isometry ~r (mirror, inversion, reflection- 
rotation: v = ou), is the homochiral association (RR) or (SS) more stable than the 
heterochiral one (RS)? In this context, properties (a) and (b) have been proved to 
be fulfilled by K(u, c~u) for several skeletal symmetries whatever the molecular vec- 
tor u is [2]. 

The scalar product form of the interaction energy entails the following 
expression: 

K ( g~  exp ~2-~kT Hgul - Ul H2]) ( g~  exp [2~--~ Ilgu2 - u2H2]) 

2 

The quantities #ij (g) = exp[- [[gui - ujll / x/2] lie between 0 and 1, and consistently 
quantify "how much the skeletal symmetry operation g makes u; coincide with uj": 
replacing 1 / K  by #,y(g) (for each operation g) in the requirements (a) and (b), the 
analogous requirements for #,j (g) are easily verified. 

Description of symmetry comes under group theory [4]. In this realization, 
abstract groups G act by permuting points (when the number of mathematical enti- 
ties is finite or countable, the action is called a permutation representation of G). 
Descent of symmetry from a highly symmetric structure to a lower one is termed as 
a group-subgroup relationship: when the structure is constituted by skeletal sites 
in a molecule, this relationship is represented by a group lattice [2,5]. For i = j, the 
set of the values ]Zii(g) characterizes the "symmetry of the molecular topography" 
of ui (the term "topography" refers to the information corresponding to the assign- 
ment of atoms on a skeleton already bearing the informations of "topology" and 
"geometry"). Indeed, the exact symmetry of u is characterized by those operations 
g for which tzii(g) = 1: they constitute a subgroup of the skeletal symmetry 
group G. 

Quite generally, a system can be described in a two-step process. At the outset, 
a basic model (a general equation, a molecular skeleton, etc.) is selected, which is 
characterized by some symmetry. When this model is applied to a particular sys- 
tem, some symmetries are lost as a result of either geometrical boundaries or topo- 
graphical boundaries (disymmetry in the assignment of local parameters). 
Arbitrary geometrical skeletons are currently drawn to account for site-permuta- 
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tional effects of the molecular point-group. However, the actual space-arrange- 
ments of ligands can be "more symmetrical" than these graphical representations, 
where the space non-equivalence of sites is exaggerated. In order to take advantage 
of such geometrical approximations, symmetrized skeletons are considered. 

On the other hand, the symmetry of the topography of the molecule also 
depends on some approximations (e.g. a hydrogen atom and a deuterium atom will 
be considered chemically equivalent provided that isotopic effects can be 
neglected). Perturbational methods rely on such approximations. Unlike geome- 
try, topography is not completely described by group theory. In order to introduce 
a mathematical definition of pairing product, we seek means to describe "topo- 
graphical symmetries" as intermediates in a lattice of symmetry groups. Referring 
to Zadeh's definition of fuzzy subsets, the functions/zii(g) defined above are suita- 
ble for this goal [6]. 

However, these functions are defined with respect to the chemical representa- 
tion of the skeletal group G. We aim at defining more general membership func- 
tions # by only some of the properties induced by the norm taking place in the 
expression of#ii(g): the fuzzy subsets defined like this would have a structure which 
is independent of the group representation considered, like the structure of 
abstract groups does not depend on the geometrical realization. Whereas the con- 
cept of fuzzy set (fuzzy logic) has been already introduced in conformational analy- 
sis [7], analytical chemistry [8] and epistomological definition of chirality [9], it is 
here used in symmetry theory. 

2. Basic propositions 

Given a set S, a subset A of S is completely defined by its characteristic (or mem- 
bership) function #A on S: Vs ~ S, #A (s) = 1 if s ~ A, and #A (S) = 0 otherwise. In a 
generalization process, a "fuzzy subset of S" is defined by a real valued map #~, 
such that: Vs E S, 0 ~< #~(s) ~< 1: #A__(s) specifies the membership level of all elements 
of S to some criterion "A" [6]. 

DEFINITION 1 
Let G be a group. A fuzzy subset A_A_ of G is called a "fuzzy subgroup of G" if its 

membership function #A: G --+ [0, 1] fulfills the requirements 
(i) A__contains a trivial element, i.e. 3g~ G, #A_(g) = 1. 
(ii) V(g, h) ~ G 2, #A_(g) • #a_(h) <~tza(gh). 
(iii) Vg~ G, UA_(g) =/zA_(g-~)- 

The neutral element of G, e, is a trivial element of any fuzzy subgroup d of G (if 
~A_(g) = 1, taking h = g-1 in the condition (ii), we get from (iii): 1 x 1 <~#A(gh) 
= #A(e)~<l ~ #_A(e)= 1). 

Since it is obvious that a trivial subgroup of G is a fuzzy subgroup of G, this defi- 
nition is an extension of the definition of a subgroup of G. 
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The "trivial part" of A defined as T(A) = {ge G,/~A__(g) = 1 }, is a trivial sub- 
group. B(A) = {ge G,/zA-(g) ¢ 0}, is also a trivial subgroup of G: by restriction of 
G to B(A__), only subgroups A which fulfill the condition: VgeG, #A-(g) ¢ O, are 
considered. 

P R O P O S I T I O N  1 

IfAis  a fuzzy subgroup of G, then: A =  G ~ V(g, h) e G 2, laA-(g)tzA-(h) = lzA_(gh). 

Proof 
=~ is obvious 
For ¢=, let g belong to G. Taking h = g-l, we get: #A-(g) • #A(g -1) = #4(e) = 1. 

Thus, according to (iii): [/ZA (g)] 2 = 1, and: Vg e G, #A_(g) = 1, i.e_A = G. [] 

P R O P O S I T I O N  2 

Suppose that h is any trivial element of A(#A-(h) -- 1 ). Then 

Vge G, #A_(gh) = #A-(hg) = #A-(g). 

Proof 
The requirement (ii) affords both the following inequalities: 

izA-(g)#d(h) ~#A-(gh) and tzA-(gh)#A-(h-1) <~#A(ghh -1) = IzA-(g) . 

Since 1 = #A-(h)= #A-(h - l )  (from (iii)): #A-(g)= #A-(gh). Likewise, the equality 
#A-(g) = #A-(hg) is easily obtained. [] 

R E M I N D E R  

A fuzzy subset A__ of G is said to be "included" in another one B_, if 

VgeG, #A-(g)<~#B_(g). 

The intersection of two fuzzy subsets A and B can be defined either by: 

#Acre(g) = #A_(g)" #B_(g) (1) 

or by 

#Arts(g) = Min[#A-(g);/~_s(g)]. (2) 

P R O P O S I T I O N  3 

Whatever is the definition (1) or (2) of the intersection of two fuzzy subsets, the 
intersection of two fuzzy subgroups of G is a fuzzy subgroup of G. 

Proof 
• The result is obvious for definition (1). 

• If the definition (2) is retained: 
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(i)/~Ans(e) = Min[#A_(e); #s(e)] = Min[1; 1] = 1, and e is a trivial element ofA n B. 

(ii) V(g, h) ~ G 2, #AaB(gh)= Min[#A(gh); #s(gh)]) >~ Min[#A(g)/zA(h);/z_B (g)/z_B(h] 

>~ Min~A_(g); #_B(g)] - Min[/zA_(h); #B_(h)]=IZAn#.(g)#A_r~_(h). 

(iii) Vg ~ G, #Aas(g -1 ) = Min[ A_(g-1); a_B(g -1)] = Min[/zA(g); #s(g)] = #ans(g). 

3. Cosets of  a group G by its fuzzy subgroups 

DEFINITION 2 
Let G be a group, and A__ be a fuzzy subgroup of G. For any element g in G, the 

"fuzzy right class (resp. left class) ofg modulo A", is the fuzzy subset of G, gA (resp. 
Ag), defined with the membership function: 

VheG, lZgA(h) = #A__(g-lh) (resp. #~(h)  = / z A ( h g - 1 ) ) .  

The (trivial) set of the fuzzy right (resp. left) classes modulo A is called "right 
(resp. left) coset of G by A__", and is denoted G/A (resp. A_A_\ G). 

DEFINITION 3 
Let E and F be two fuzzy subsets of a group G. The "product of E by F"  is 

defined as the fuzzy subset E • F with the membership function: 

Vh 6, = 

PROPOSITION 4 
The set of all the fuzzy subsets of a finite group G endowed with the product 

" . "  is a monoid. It is denoted by_P_P(G). 

Proof 
By construction, the operation " - "  is internal in _P(G). Let us show that it is asso- 

ciative. Let D, E_ and F be three fuzzy subsets of a finite group G: 

Vs~G, #(p_.~.E(s)= MeaX[#D._E(g)-#£(g-'s)] 

:Max~[MaX[#D(h)#E(h-lg)]#E(g-ls)]}gea I. 

= Ma~[#D_(h). #_~(h-lg) • .r(g-ls)] 

= Ma~[#_~(h). #g(g:). #£(g~-lh-ls)] (where g = h i )  

= u ~ _ . ( e . ~ ) ( s ) .  
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Following the same process as in group theory, we seek a condition on A ensuring 
that the subset G/A__ of P(G) has a group structure for the product " . " .  Let A be a 
fuzzy subgroup of G. If E and _F_ are two right classes hA and kA__ modulo A, their 
product is given by 

Vs~G,#hA.kA(S) = MaaX~A_(h-lg ) . IzA4_(k-lg-ls)]. [] 

DEFINITION 4 
A fuzzy subgroup A__ of G is said to be "normal in G" if its membership function 

is central on G, i.e. if: V(g, h) ~ G 2, t~A_ ( hgh -1 ) = t~A__(g). 

This provides an extension of the definition of normal (trivial) subgroups of G. 

THEOREM 1 

If A is a fuzzy subgroup of G, then (G/A,  .)  is a group if and only if A is normal 
in G. Moreover: V(gA, hA__) ~ (G/A__) 2, gA__ • hA = (gh)A and (G/A,  .)  is isomorphic 
to G/T(A) .  

Proof  
(a) G / A  contains A_A_ = eA. 

(b) The operation "*"  is internal in G/A: V(h, k, s) e G 3, 

#A_(h-lg) • #A_(k-lg-ls) = #A_(h-lg) . IzA_(g-lsk -1) (A is normal in G) 

<. izA_(h-lgg-lsk -1) =#A(h- l sk  -1) (A is a fuzzy subgroup) 

<. #A_(k-lh-ls) --- #(hk)A(S) (A is normal in G) 

Therefore, 

#hA_okA(S) = Max[#A(h-l  g)#A_(k-l g-l  s)] <~ #(hk)A__(S) = ~A_ (k-l  h-ls)  . 

For g = h,#A(h-lg)  - #A_(k-lg-ls) matches the right term and, hence, the Max 
value. Consequently, #hAokA (S) = #(hk)A_(S), and hA * kA = (hk)A E G/A.  

(c) The operation is associative (proposition 4). 

(d) eA = A is the neutral element of G/A__. 

(e) From (b), the inverse element ofgA_A_ is g-lA. 

(f) V(g, h) ~ G 2, h ~ T(gA__) ¢~ izA_(g-lh) = 1 ¢~ g- lh  ~ T(A__) ¢~ h egT(A__). 
Thus, Vg~G,  T(gA__) = gT(A) .  This allows the biunivocal function T: G/d---~ 

G~ T(A) ,  to be defined by: Vg ~ G, ~-(gA) = gT(A) .  
Since A is a normal fuzzy subgroup of G, T(A)  is a normal subgroup of G. Indeed, 
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Vg e G, Vh e T(A) ,  #A(ghg-1) = #A_ (h) = 1, 
Consequently, 

V(g, h) e G 2, T(gA • hA) = r((gh)A__) (from b) 

= (gh) T(A__) = gT(A_)hT(A_) = T(gA)T(hA__), 

and T is an isomorphism between G / A  and G/T(A) .  

and thus, VgeG,  gT(A__)g-X=T(A). 

[] 

The following definition is motivated by the search for an extension of the 
properties of fuzzy subsets whose characteristic functions have the form: 
#c(g) = e-Ilgu-vll/,/2. 

DEFINITION 5 
Let A__ be a fuzzy subgroup of a group G and consider the fuzzy subsets C of G ful- 

filling the requirements 

(i) A ~ C - l e C ,  

i.e. 

(ii) C = C • A ,  

#c_(g) 
V (g ,h )~G 2, Izc(g) " #c_(h) <~l-ZA_(h-lg) = I-ZhA_(g) <~ #c_(h) • 

(_C-l is defined by: Vg e G, #c-~ (g) = #c  (g-l).)  

NOTATIONS 
The set of such fuzzy subsets is denoted as QA_: it contains at least the empty set 

and all the classes gA__(QA_ ~ G/A__). The subset of QA of the fuzzy subsets containing 
at least one trivial element is denoted as 0.4. 

PROPOSITION 5 
Let A be a fuzzy subgroup of a group G. Then 69A_ = G/A.  Therefore, when C 

contains a trivial element, the inclusions (i) and (ii) are equalities. 

Proof  
Let C belong to ~9`4. Let h be a trivial element of C. Then 

Vg~G,  #c_c_(g)" 1 <~#A_(h-lg) ----- #ha_(g) < ~ - -  
u c(g) 

Thus, 

Vg O,  c(g) =  hA(g). 

On the other hand, it is easily checked that all classes modulo A belong to OA_(h is 
a trivial element of hA). 
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4. Conjugacy links 

DEFINITIONS 6 
Let A_A_ and B be two fuzzy subgroups of G. A fuzzy subset __C of G is called a "con- 

jugacy link between A_A_ and B" if: C e QA_ and_C_C -1 ~ Q_B, i.e. 

(i) A ~ C - I * C  and B ~ C o C  -1  , 

(ii) C ~ C * A  and _C_C -1 ~ C -1 • B  

(the empty set 0 is always a conjugacy link). 

Trivial conjugacy 
DEFINITION 7 

Two fuzzy subgroups A and B of a group G are said to be "trivially conju- 
gated" if for some element go of G: g0A = _B_g0. 

If A__ and B are trivially conjugated, then their trivial parts T(A__) and T(B) are 
conjugated subgroups of G. 

THEOREM 2 
Let A__ and B be two fuzzy subgroups of G. A conjugacy link with a trivial ele- 

ment, C, exists between A_A_ and B (_C_eOA and C -1 cO_n) if and only ifA_A_ and B are 
trivially conjugated. 

Proo f  
• Suppose that C is a non-empty conjugacy link between d and __B and that __C ~ Oa__ 
(or C -1 e O_s). From proposition 5, C e G/A_ and C- :  e G/B_. Thus, there exist two 
elements go and h0 of G such that 

VgGG, #god(g) = #__c(g) =/Zc-,(g -1) = #ho_B(g-l). 

When g = h o  1 ,/Zg0A (ho  I ) = tZhoB__(ho). Therefore, #A_(gfflh0 -1) = #~(hfflho) =~B_(e) = 1. 
Now, for any element g of G, 

#~0 (g) = #~(ggo l) = #8_(ggolholho) = lzB_((ggo:holho) - l )  = #B_(ho 1 (ggolho 1)-1) 
= #hoB_((ggolho1) -1) = lZgoA_(ggolho 1) = #a_4_(golggolhol). 

But since gol hol is a trivial element of A, proposition 2 claims that 

#A_(go: ggo: ho: ) = #A_(gol g) . 

Therefore, #No (g) = #goA__(g), i.e. d and B are trivially conjugated. 

• In contrast, it is easily checked that if A and B_ are trivially conjugated by an ele- 
ment go of G, then the fuzzy subset C = god = B g0 is a conjugacy link between A 
and__B containing the trivial element go. 



254 R. Chauvin / Chemical algebra. I 

Fuzzy conjugacy 
Definition 6 allows the conjugacy concept to be extended when the conjugacy 

link C does not  contain any trivial element. 
Provided that a definition of the cardinality of  a fuzzy subset is given, let us 

define the positive real number: X = (•C)2/(•A__•B).  
Then, X = 0 only if C = 0. And if C contains a trivial element, i.e. if A_ and B 

are trivially conjugated, then X = 1. X is a measure of  the extended conjugacy, but  
in order to be fully consistent, this measure must  satisfy 

(a') 0~<X~< 1. 

( b ' )  • X = 0 _C_C = 0. 

• X = 1 ¢~ C ¢ 0 andA andBare  trivially conjugated. 

The consistency of this measure depends on the definition of  #A_, #B ,  # C .  

5. C o n n e c t i o n  with pa i r ing  p r o d u c t s  

D E F I N I T I O N  8 

Let G be a finite or compact  group, endowded with a Haar  measure dg. Let A__ 
be a fuzzy subset (resp. subgroup) of G, and le tp  be a positive number.  The "index 
of  A__ in G" is defined as the positive number  

-1 

If  G is a finite group of  order I GJ, the number of  elements of  A__ can then be defined 
as # A  = IGI/[G:A_]. 

Instead of  the classical Hamming  distance between fuzzy subsets of  G, 

d/-/(A,B) = [#~(g) -/z_B(g)[ p dgJ , 1 <~p, 

the following distance is considered: 

dF(A__,B) = [ fG le-ln2 ~A-(g) -- e-ln2 un-(g'lP dg] 1/p 

and the "index of A in G" is defined by [G: A__] = [dr(O, A_)]-P. 
The reason for this change has been discussed in the introduction: it is easily 

checked that  the functions #~1 and #22 related to the skeletal analogs ul and u2 are 
membership functions of  two fuzzy subgroups A1 and A 2 describing the topogra- 
phical symmetry of  ul and u2. On the other hand, the function/z12 is easily proven 
to be the membership function of  a conjugacy link _C between A_ 1 and A 2. The use of  
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the distance dF with p = -a/rqkT > 0 allows the chemical pairing constant K to 
be defined as the reciprocal of the conjugacy index X: 

X = I / K .  

Consequently, the requirements (a') and (b') for X are respectively equivalent to 
the requirements (a) and (b) for K. 

6. Discuss ion 

Two skeletal analogs represented by molecular vectors ul and u2 exhibit the 
same symmetry if their symmetry groups are conjugated in the skeletal symmetry 
group G. Since Ul and u2 describe molecular topographies, informations about 
their respective symmetries are complemented by the consideration of the so-called 
symmetry subgroups A_A_ and B: their abstract definition and first properties make 
them relevant extensions of the corresponding symmetry groups. The similarity of 
ul and u2 can be revealed in some interaction between them, and the topographical 
symmetry of this interaction is no longer characterized by a fuzzy subgroup, but 
by a conjugacy link C between A and B: the force of this link, i.e. the "topographi- 
cal symmetry  similarity", is characterized by the conjugacy index X, provided 
that X remains inside [0, 1] (only 0 or 1 being attained in trivial cases). When A, B 
and C are non-trivial fuzzy subsets of G, the validity of the latter requirement 
depends on the distance selected for the definition of 4/:A, 4/:B and 4/:C: for the dis- 
tance de devised above, X has a strong thermochemical meaning: G is realized as a 
skeletal symmetry point-group, and X varies in inverse ratio to the chemical pair- 
ing constant K, for which the consistency requirements (a') and (b') were proven in 
several cases [ 1,2]. 

Finally, X takes into account a specific interaction (of magnitude #___~, and 
therefore characterizes the symmetry similarity more specifically than the distance 
dE (A, B) does. 

7. Conclus ion  

A particular property of a molecule (NMR spectrum, optical rotation, specific 
reactivity, etc.) can be described by different sets of ligand parameters which corre- 
spond to different levels of accuracy. Quite aside from a mathematical generality, 
the chemical relevance of the fuzzy subgroups depends on whether the #(g) values 
calculated from different parameter sets vary as the "accuracy" of the descriptions 
produced ("p" being a freedom degree in the search for a fit). Then, "the fuzzy sub- 
group" of a parametrized chemical property would be defined by the parameter 
set giving the best fit. In contrast, starting from some parameter set (e.g. numbers), 
a better set (e.g. vectors) could be sought with the aid of the former approximate 
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fuzzy subgroup.  Such a putative process would be based on the assumpt ion that  
the fuzzy symmetry  group of  a parametr ized molecular  proper ty  is a well-defined 
characteristic: it cannot  be validated from physical principles, but  it could be tested 
empirically. Nevertheless,  this conceptual  process will introduce a generality o f  
the algebra of  stereogenic pairing equilibria [10]. In addition, geometrical  interpre- 
tat ions will be reported [11]: membership functions of  a displacement group in E2 
or E3 can be defined by  

#(g) = exp [ -d (gu ,  u ) / v ~ ] ,  

where u represents a figure in En and dis the Hausdorf fd is tance  [ 12]. F r o m  this defini- 
tion, the question of  "cont inuous  symmetry measures"  could be addressed [13]. 
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